Controlling the nanostructure of epoxy resins: Reaction selectivity and stoichiometry
By Morsch, Suzanne; Kefallinou, Zoi; Liu, Yanwen; Lyon, Stuart B.; Gibbon, Simon R.
Published in Polymer
2018
Abstract
The internal topology of epoxy resins is, for the first time, shown not to be the determining factor for small molecule transport. Whilst epoxy resins comprise the matrix component of many high performance composites, coatings and adhesives, the nanostructure and transport properties of these materials are not well understood. Here, peakforce AFM imaging, in-situ FTIR cure analysis and nanochemical AFM-IR imaging are used to establish the effects of reaction selectivity and stoichiometry on the nanostructure of epoxy-phenolic resins based on bisphenol-A and diglycidyl ether of bisphenol-A. In the presence of excess epoxy, resins transition from exhibiting homogeneous internal nanostructures to the familiar nodular morphology characteristic of epoxies. This occurs as a result of lower reaction selectivity in the presence of increasing catalyst concentrations. Surprisingly however, chemically similar stoichiometric resins with a heterogeneous nanostructure display improved resistance to corrosion breakdown (ion transport) and lower water uptake than the homogeneous resins.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.