Extensive analysis of an SOC stack for mobile application in reversible mode under various operating conditions
By Preininger, Michael; Stoeckl, Bernhard; Suboti?, Vanja; Hochenauer, Christoph
Published in Electrochimica Acta
2019
Abstract
The reversible solid oxide cell (rSOC) is a key technology that is capable of generating electricity, heat, and valuable fuels in a highly efficient manner. By integrating an rSOC module and all of the necessary components into a compact unit, it is possible to realize an autonomous reversible system. In order to learn more about the durability and reliability of a ten-cell rSOC stack, originally developed for mobile applications, was operated in both fuel cell and electrolysis modes under realistic operating conditions. The stack was fed with gas mixtures of H2, H2O, CO2 and CO. The stack examined in the course of these experiments consists of large, planar, anode-supported cells (ASC). Compared to stacks with conventionally produced interconnects, the concept used for this stack was based on stamped metal sheet plates of CroFer22 APU, which means that they are lightweight and easy to assemble. The present study includes a detailed characterization of the stack's performance during reversible operation and evaluates its applicability for real operation. To this end, a comprehensive stack analysis including electrochemical impedance spectroscopy (EIS), chronopotentiometry, a gas analysis, polarization curves, and temperature measurements. In consideration of system integrations, the stack was operated in galvanostatic mode under system-relevant, steady-state conditions: at a fuel utilization of 80% in fuel cell mode, and at a reactant utilization of 70% in electrolysis mode. The feasibility of this SOC stack's long-term operation has thus been proven for an operating time of >2000 h. Finally, degradation analyses of both the stack and the individual cells were performed, whereby the stack was observed to have a degradation rate of 3.7%/kh.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.