Significant enhancement of photoactivity in one-dimensional TiO2 nanorods modified by S-, N-, O-doped carbon nanosheets

By Kmentov
Published in Catalysis Today 2019

Abstract

Titanium dioxide (TiO2) represents one of the most active photocatalysts among metal oxides for the degradation of pollutants and for solar water splitting to produce hydrogen. The most critical drawbacks hindering its broad practical use are the absorption majorly in the UV part of solar spectrum and slow charge dynamics. Combination of TiO2 with a suitable partner in a hybrid nanostructure can effectively address these drawbacks. Here we report a novel nanocomposite system based on one-dimensional TiO2 nanorods wrapped with a sulfur-, nitrogen-, and oxygen-doped carbon (SNOC) nanosheets. The SNOC nanosheets are synthesized by a cost-effective and facile route using eco-friendly carrageenan as a sulfur, oxygen, and carbon source and urea as a nitrogen source. Silica was used as the templating agent that leads to large surface area materials after its removal at the end of the synthesis. Therefore, the synthesized material exhibits superior photocatalytic performance for decoloring representative Rhodamine B (RhB) under visible light irradiation. SNOC shows the apparent rate constant of 7.6

Read » Back