Study of hydrogen release resulting from the transformation of austenite into martensite

By Pu, S. D.; Turk, A.; Lenka, S.; Ooi, S. W.
Published in Materials Science and Engineering: A 2019

Abstract

Hydrogen desorption behaviour of two different austenite-containing steels pre- and post-deformation was studied using a combination of X-ray diffraction, microprinting and thermal desorption analysis, aided by diffusion simulations. The change in hydrogen desorption rates was found to be closely related to the degree of martensitic transformation. In the duplex steel which exhibited no phase transformation, the hydrogen desorption rate stayed virtually unchanged after deformation. On the other hand, in the 304 austenitic steel which experienced substantial martensitic transformation, a large increase in the hydrogen desorption rate was detected after deformation. This is the first direct observation of deformation-induced hydrogen release, which has previously been proposed to be a key contributor to the embrittlement in austenite-containing steels.

Read » Back