Metal?organic framework derived porous hollow ternary sulfide as robust anode material for sodium ion batteries
By Cao, Dongwei; Fan, Weidong; Kang, Wenpei; Wang, Yuyu; Sun, Kaian; Zhao, Jinchong; Xiao, Zhenyu; Sun, Daofeng
Published in Materials Today Energy
2019
Abstract
Multiple-metal compound materials have been demonstrated as high performance anode materials for energy storage. In this work, porous hollow polyhedron structured multicomponent sulfides and N-doped carbon-based composite (MnS-(ZnCo)S/N-C) is prepared through a gas-solid reaction using Mn, Zn, Co-based ternary metal?organic frameworks as precursor. As sodium ion batteries anode, MnS-(ZnCo)S/N-C exhibits impressive electrochemical performance, especially for the cycling performance at high current. At a current density of 2.0 A g?1, it delivers a capacity of 316 mAh g?1 within 400 cycles and a high capacity retention (92.9%) compared with that of the third cycle. Furthermore, the composite electrode maintains a capacity retention of 40% when the current raises from 0.1 to 10.0 A g?1 step by step. As a robust sodium storage host, this composite anode benefits from porous hollow polyhedron structures composed of primary nanoparticles, N doped C coating on primary particles, and multicomponent sulfides.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.