Laser structured nickel-iron electrodes for oxygen evolution in alkaline water electrolysis
By Koj, Matthias; Gimpel, Thomas; Schade, Wolfgang; Turek, Thomas
Published in International Journal of Hydrogen Energy
2019
Abstract
In the present work, the ultra-short pulse laser ablation method is applied to create novel surface alloys on NiFe electrodes for the oxygen evolution reaction (OER) in alkaline water electrolysis. The nickel-to-iron ratio in the alloy can be controlled with the ultra-short pulse laser ablation method by varying the thickness of electrochemically deposited iron layers onto the nickel mesh substrate. Besides the application of the additional catalyst, the laser treatment enhances the surface area and a defined micro- and submicrometer structure is created in a single step. The laser structured nickel-iron electrodes show a significantly lower overpotential of 249 mV than an electrochemically deposited Ni-NiFe alloy with 292 mV at 10 mA cm?2, 298 K and 32.5 wt% KOH for the OER, although some loss of iron over time could not be prevented.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.