Impact of interfaces on the radiation response and underlying defect recovery mechanisms in nanostructured Cu-Fe-Ag

By Wurmshuber, Michael; Frazer, David; Bachmaier, Andrea; Wang, Yongqiang; Hosemann, Peter; Kiener, Daniel
Published in Materials & Design 2018

Abstract

Newest developments in nuclear fission and fusion technology as well as planned long-distance space missions demand novel materials to withstand harsh, irradiative environments. Radiation-induced hardening and embrittlement are a concern that can lead to failure of materials deployed in these applications. Here the underlying mechanisms are accommodation and clustering of lattice defects created by the incident radiation particles. Interfaces, such as free surfaces, phase and grain boundaries, are known for trapping and annihilating defects and therefore preventing these radiation-induced defects from forming clusters. In this work, differently structured nanocomposite materials based on Cu-Fe-Ag were fabricated using a novel solid-state route, combining severe plastic deformation with thermal and electrochemical treatments. The influence of different interface types and spacings on radiation effects in these materials was investigated using nanoindentation. Interface-rich bulk nanocomposites showed a slight decrease in hardness after irradiation, whereas the properties of a nanoporous material remain mostly unchanged. An explanation for this different material behavior and its link to recovery mechanisms at interfaces is attempted in this work, paving a concept towards radiation resistant materials.

Read » Back