Trimethylsilane-based pretreatments in a Mg-rich primer corrosion prevention system
By Schulz, Douglas L.; Sailer, Robert A.; Braun, Chris; Wagner, Andrew; Klaverkamp, Natalie; Mattson, Kevin; Sandstrom, Joseph; Bunzow, David; Payne, Scott; He, Jie; Li, Jun & Chisholm, Bret
Published in Progress in Organic Coatings
NULL
2008
Abstract
A trimethylsilane-based coating was investigated as a pretreatment for Al-2024 T3 in a novel Mg-rich primer corrosion prevention system. SiC-based thin films were deposited onto Al substrates by plasma-enhanced chemical vapor deposition (PECVD). A screening study of the pressure (P) dependence of films deposited at 350 °C showed an increase in growth rate from 0.6 to 1.9 Torr. A second screening study where P was fixed at 1.9 Torr and temperature (T) was varied from 125 to 550 °C showed decreasing growth rates with increasing temperature with an apparent transition around 300 °C. Electrochemical impedance spectroscopy (EIS) of the SiC-based films on Al-2024 after exposure to a corrosive environment (i.e., dilute Harrison solution) indicated that samples coated using SiC-based films exhibit higher low frequency impedance (i.e., 100–1000 X higher) than bare Al-2024 with open circuit potential remaining 0.1 V higher for the former suggesting the SiC-based films slow the corrosion process. A Mg-rich primer was coated onto the SiC on Al-2024 with the galvanic function of the system determined by EIS. As compared to SiC on Al-2024, a similar behavior for the low frequency impedance was observed for the Mg-rich primer-coated samples with some films exhibiting 1E + 8 Ω at 0.1 Hz indicating a strong barrier property. Initial gas jet erosion using acrylic media indicates the Mg-rich primer coatings are removed in preference to the Si–C films--the first step toward demonstrating a permanent pretreatment. When successfully developed and optimized, the value of such a hard, protective coating is the reduction of a three-component coatings system (i.e., pretreatment, primer, and topcoat) to a two-component system (i.e., primer and topcoat).
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.