Electrophoretic Deposition of Mesoporous Niobium(V)Oxide Nanoscopic Films
By Jha, Gaurav; Tran, Thien; Qiao, Shaopeng; Ziegler, Joshua M.; Ogata, Alana F.; Dai, Sheng; Xu, Mingjie; Le Thai, Mya; Chandran, Girija Thesma; Pan, Xiaoqing; Penner, Reginald M.
Published in Chemistry of Materials
Abstract
Nb2O5 is a Li+ intercalation metal oxide that is of current interest for lithium ion battery electrodes. The electrophoretic deposition (ED) of Nb2O5 thin-films from aqueous, NbOx colloidal solutions is reported here. For films ranging in thickness from 38 to 144 nm, the mass loading of Nb2O5 on the electrode is correlated with the coulometry of ED using quartz crystal microbalance gravimetry. Crystalline, phase pure films of orthorhombic, T-Nb2O5, are obtained by postdeposition calcination. These films exhibit unusually high specific capacities for Li+-based energy storage as a consequence of ?70% porosity. For example, a 60 nm thick film displays a specific capacity, Csp, of 420 mAh/g at 5 A/g and 220 mAh/g at 50 A/g, which can be compared with the theoretical Faradaic capacity of 202 mAh/g. T-Nb2O5 films also have a specific energy density in the range from 770
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.