Defect enhances photocatalytic activity of ultrathin TiO2 (B) nanosheets for hydrogen production by plasma engraving method

By Kong, Xiangchen; Xu, Yiming; Cui, Zhenduo; Li, Zhaoyang; Liang, Yanqin; Gao, Zhonghui; Zhu, Shengli; Yang, Xianjin
Published in Applied Catalysis B: Environmental 2018

Abstract

As for practical application, ultrathin two-dimension (2D) materials have exhibited high performances in photocatalysis, electrocatalysis, and supercapacitors. Usually, when used 2D TiO2 (B) nanosheet as a photocatalyst, it absorbs only ultraviolet light, and several approaches have been taken to narrow the band gap of TiO2. Thus, we demonstrated a facile and environmental friendly method to enhancing hydrogen production by introducing defects of O vacancy and Ti3+ in surface and bulk TiO2 (B) nanosheets through the ambient-temperature plasma engraving treatment. After plasma treatment, the band gap of the 2D TiO2 (B) nanosheets decreased from approximately 3.13 eV

Read » Back