Ion transport studies in CuI-doped silver borovanadate glassy system
By Murugesan, S.; Wijayasinghe, A. & Bergman, B.
Published in Journal of Non-Crystalline Solids
NULL
2008
Abstract
In the present report, ionic transport properties and microstructural investigations of superionic materials in a cost-effective glassy system xCuI–(100 - x)[2Ag2O–0.7V2O5–0.3B2O3], where x = 30, 40, 45, 50 and 60, have been described. The temperature dependent electrical conductivity studies were carried out by ac impedance analysis. The microstructure of the materials studied by SEM indicated the presence of dispersed CuO and AgI micro-crystals in the silver oxysalt glass matrix. High room temperature electrical conductivity of 3.58 X 10-3 S cm-1 and low activation energy of 0.24 eV were obtained for the best conducting composition. The ac impedance data were analyzed using impedance and modulus formalisms. These materials show extremely high ti value of 0.999 and the ionic conductivity is apparently due to Ag+ ions only. The use of two glass formers helped to form materials with higher Tg, higher thermal stability and better ionic transport properties.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.