Phase-Controlled Synthesis of MnO2 Nanocrystals by Anodic Electrodeposition: Implications for High-Rate Capability Electrochemical Supercapacitors
By Wei, Weifeng; Cui, Xinwei; Chen, Weixing & Ivey, Douglas G.
Published in The Journal of Physical Chemistry C
NULL
2008
Abstract
The crystal structure of anodically electrodeposited MnO2 nanocrystals can be manipulated by introducing complexing agents in the electrodeposition solutions. MnO2 nanocrystals with three types of crystal structures were observed: hexagonal ε-MnO2 (complex-free), defective rock salt MnO2 (ethylenediaminetetraacetic acid), and defective antifluorite MnO2 (citrate). The capacitive performance of the MnO2 nanocrystals depends strongly on their crystal structures. MnO2 with defective rock salt and antifluorite structures exhibit better capacitive properties than ε-MnO2. The electrochemical capacitance differences can be explained in terms of the crystal chemistry. In both the defective rock salt and antifluorite MnO2, an anomalous trend was observed. The specific capacitance does not decrease with increasing scanning rate. A possible reason is that certain physicochemical changes, such as phase transformations or morphology changes, occur preferentially at high cycling rates.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.