Effects of Counterion Mobility, Surface Morphology, and Charge Screening on the Electron-Transfer Rates of Porphyrin Monolayers
By Jiao, Jieying; Nordlund, Eric; Lindsey, Jonathan S. & Bocian, David F.
Published in The Journal of Physical Chemistry C
NULL
2008
Abstract
The standard electron-transfer rate constants (k0) for the oxidation of porphyrin monolayers are reported for a number of solvent/electrolyte systems and electroactive surfaces. The goal is to explain the inverse correlation between the electron-transfer rates and the porphyrin surface concentration (Roth et al., J. Phys. Chem. B 2002, 106, 8639-8648). Each porphyrin is a zinc chelate and contains three meso-mesityl groups and a benzyl alcohol or benzyl thiol for surface attachment. The solvent/electrolyte systems include (i) the organic solvent propylene carbonate containing electrolytes with a common cation and anions of different size/mobility (PF6-, ClO4-, and Cl-) and (ii) neat ionic liquids with a common cation and anions of different size/mobility [(CF3SO2)2N- and (NC)2N-]. The substrates include Si(100), Au(111), and TiN. The k0 values observed using electrolytes with PF6-, ClO4-, and (CF3SO2)2N- counterions are similar to one another, whereas those observed using electrolytes Cl- and (NC)2N- counterions are 2-5 times faster. The faster rates for the latter anions are attributed to their smaller size/higher mobility. The k0 values observed for monolayers on Si(100) and Au(111) are similar to one another; the k0 values for monolayers on TiN are ∼5-fold faster. The faster rates for the TiN substrate are attributed to a rougher surface morphology (as determined via atomic force microscopy measurements) which results in an actual surface concentration that is lower than the concentration based on the geometrical area of a planar substrate. The k0 values determined for mixed monolayers where the electroactive porphyrin is co-deposited with an electroinactive porphyrin are dependent only on the concentration of the redox-active species, not on the total porphyrin concentration. This behavior is consistent with space-charge effects being the principal determinant of the inverse correlation between the electron-transfer rates and the porphyrin surface concentration. The space charge effects can be mitigated, but not eliminated, by using smaller, more mobile counterions and rougher surfaces.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.