Ultrasensitive nanostructure sensor arrays on flexible substrates for multiplexed and simultaneous electrochemical detection of a panel of cardiac biomarkers

By Shanmugam, Nandhinee Radha; Muthukumar, Sriram; Chaudhry, Shajee; Anguiano, Jonathan; Prasad, Shalini
Published in Biosensors and Bioelectronics NULL 2016

Abstract

Abstract Multiplexed detection of protein biomarkers offers new opportunities for early diagnosis and efficient treatment of complex diseases. Cardiovascular diseases (CVDs) has the highest mortality risk in {USA} and Europe with 15-20 million cases being reported annually. Cardiac Troponins (T and I) are well established protein biomarkers associated with heart muscle damage and point-of-care monitoring of both these two biomarkers has significant benefits on patient care. A flexible disposable electrochemical biosensor device comprising of vertically oriented zinc oxide (ZnO) nanostructures was developed for rapid and simultaneous screening of cardiac Troponin-I (cTnI) and cardiac-Troponin-T (cTnT) in a point-of-care sensor format. The biosensors were designed by selective hydrothermal growth of ZnO nanostructures onto the working electrodes of polyimide printed circuit board platforms, resulting in the generation of high density nanostructure ZnO arrays based electrodes. The size, density and surface terminations of the nanostructures were leveraged towards achieving surface confinement of the target cTnT and cTnI molecules on to the electrode surface. Multiplexing and simultaneous detection was achieved through sensor platform design comprising of arrays of Troponin functionalized ZnO nanostructure electrodes. The sensitivity and specificity of the biosensor was characterized using two types of electrochemical techniques; electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis on the same sensor platform to demonstrate multi-configurable modes. Limit of detection of 1 pg/mL in human serum was achieved for both cTnI and cTnT. Cross reactivity analysis showed the selectivity of detecting cTnT and cTnI in human serum with wide dynamic range.

Read » Back