One-pot synthesis of hierarchical Ni2P/MoS2 hybrid electrocatalysts with enhanced activity for hydrogen evolution reaction

By Liu, Yan-Ru; Hu, Wen-Hui; Li, Xiao; Dong, Bin; Shang, Xiao; Han, Guan-Qun; Chai, Yong-Ming; Liu, Yun-Qi; Liu, Chen-Guang
Published in Applied Surface Science NULL 2016

Abstract

Abstract A simple one-pot synthesis method has been used to fabricate novel Ni2P/MoS2 hybrid electrocatalysts for hydrogen evolution reaction (HER). Owing to the weak conductivity and layered structure of MoS2, Ni2P nanoparticles with excellent conductivity and activity have been doped into MoS2 for improving the electrocatalytic performances for HER. The structure and morphology of the as-prepared Ni2P/MoS2 hybrid nanostructures are characterized. {XRD} and {XPS} show the elemental composition and valence of Ni2P/MoS2. {SEM} and {TEM} confirm that the close interaction of the hybrid materials and good dispersion of Ni2P nanoparticles. The as-synthesized Ni2P/MoS2 hybrid electrocatalysts exhibit excellent activity with onset overpotential of 75 mV and Tafle slope of 76 mV dec?1, which are much better than that of pure MoS2. The enhanced stability of the as-prepared Ni2P/MoS2 for {HER} has also been observed. The improved performances for {HER} may be ascribed to the better conductivity and dispersion of MoS2 nanosheets in Ni2P/MoS2 hybrid electrocatalysts. The small size and good dispersion of Ni2P nanoparticles also contributed to the enhancement of {HER} activity. Compared with mechanically mixed MoS2 and Ni2P (Ni2P-MoS2), Ni2P/MoS2 hybrid materials demonstrate better electrochemical performances for HER, implying the existence of synergistic effect between Ni2P and MoS2 on {HER} activity.

Read » Back