Centrifugally-spun carbon microfibers and porous carbon microfibers as anode materials for sodium-ion batteries

By Dirican, Mahmut; Zhang, Xiangwu
Published in Journal of Power Sources NULL 2016

Abstract

Abstract Natural abundance and low cost of sodium resources bring forward the sodium-ion batteries as a promising alternative to widely-used lithium-ion batteries. However, insufficient energy density and low cycling stability of current sodium-ion batteries hinder their practical use for next-generation smart power grid and stationary storage applications. Electrospun carbon microfibers have recently been introduced as a high-performance anode material for sodium-ion batteries. However, electrospinning is not feasible for mass production of carbon microfibers due to its complex processing condition, low production rate and high cost. Herein, we report centrifugal spinning, a high-rate and low-cost microfiber production method, as an alternative approach to electrospinning for carbon microfiber production and introduce centrifugally-spun carbon microfibers (CMFs) and porous carbon microfibers (PCMFs) as anode materials for sodium-ion batteries. Electrochemical performance results indicated that the highly porous nature of centrifugally-spun {PCMFs} led to increased Na+ storage capacity and improved cycling stability. The reversible capacity of centrifugally-spun {PCMF} anodes at the 200th cycle was 242 mAh g?1, which was much higher than that of centrifugally-spun {CMFs} (143 mAh g?1). The capacity retention and coulombic efficiency of the centrifugally-spun {PCMF} anodes were 89.0% and 99.9%, respectively, even at the 200th cycle.

Read » Back