One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped {CNTs} for highly advanced total water splitting

By Das, Debanjan; Nanda, Karuna Kar
Published in Nano Energy NULL 2016

Abstract

Abstract A one-step/one-pot strategy to synthesize phase pure Co2P nanoparticles encapsulated N, P dual-doped carbon nanotubes (denoted as Co2P/CNT) is developed. The method is free of toxic, pyrophoric alkylphosphine as the phosphorus source, does not involve the use of sophisticated instrumentation or expensive precursors and may be extended to other transition-metal phosphides. When the as prepared Co2P/CNTs are applied as an anode for {OER} in 1 M KOH, a current density of 10 mA/cm2 is achieved at an overpotential of 292 mV which is 36 mV less than that required for the state-of-art {OER} catalyst RuO2 with a small Tafel slope of ?68 mV/decade. While applied as a cathode towards HER, Co2P/CNTs exhibit a current density of 10 mA/cm2 at an overpotential of 132 mV with a Tafel slope of 103 mV/dec that compares favourably with the state-of-the art {HER} catalyst, Pt/C. After 15 h of continuous electrolysis for both {HER} and OER, the electrode material preserves its structure along with its robust catalytic activity which points out to their excellent stability. A total alkaline water electrolyzer constructed by employing Co2P/CNT as catalyst on both anode and cathode delivered a current density of 10 mA/cm2 at around 1.53 V over an extended operational period rivalling the state-of-art combination of Pt/C and RuO2 and is among the best of the bi-functional total-water splitting electrocatalysts reported till date. This remarkable performance of Co2P/CNTs can be attributed to the intrinsic catalytic activity of Co2P nanoparticles fortified with heteroatom doped few layered graphene which results in enhanced electrical conductivity besides providing long-term stability.

Read » Back