Design of Electrodeposited Bilayer Structures for Reliable Resistive Switching with Self-Compliance

By Kim, Min-Kyu; Lee, Jang-Sik
Published in ACS Applied Materials & Interfaces 2016

Abstract

Programmable memory characteristics of electrodeposited CuOx-based resistive random access memory (ReRAM) can be significantly improved by adopting a bilayer structure with a built-in current limiter. To control the on-current and enhance the device uniformity, the bilayer structure of Pt/CuOx (switching layer)/CuOx (current limiter)/Pt is proposed. This structure is synthesized by controlling solution pH during electrochemical deposition (ECD). The bilayer structure of Pt/CuOx (synthesized at pH 9)/CuOx (synthesized at pH 11.5)/Pt exhibits reliable and uniform self-compliant resistive switching behavior. The origin of resistive switching is attributed to formation and rupture of conductive filaments in the CuOx (pH 9) layer. However, the CuOx (pH 11.5) layer acts as the resistor without resistive switching to control the overall resistance in ReRAM. Reversible

Read » Back