Corrosion behavior of two bipolar plate materials in simulated PEMFC environment by electrochemical noise technique
By Lafront, A.-M.; Ghali, E. & Morales, A.T.
Published in Electrochimica Acta
NULL
2007
Abstract
The corrosion behavior of 316L stainless steel (316L) and bulk amorphous Zr75Ti25 (AB) alloy was studied using electrochemical noise (EN) in simulated polymer electrolyte membrane fuel cell (PEMFC) conditions at 25 and 80 °C. At open circuit potential, under H2 environment, AB exhibited a higher corrosion-resistance than 316L and the contrary was observed under O2 environment. At imposed cathodic potential, under H2 environment for PEMFC anodic simulation, the reduction mechanism of 316L at 80 °C gave the most important EN signals of all other conditions. At imposed anodic potential, under O2 environment for cathodic simulation, the passive state was observed for 316L while severe localized corrosion for AB was obvious at 80 °C. It is concluded from the corrosion data of this work that in the anode environment of a PEMFC, the AB alloy could be a better candidate than 316L for bipolar plates. The contrary was observed in the simulated cathode environment.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.