Tubular Membrane Cathodes for Scalable Power Generation in Microbial Fuel Cells

By Zuo, Yi; Cheng, Shaoan; Call, Doug & Logan, Bruce E.
Published in Environmental Science & Technology NULL 2007

Abstract

One of the greatest challenges for using microbial fuel cells (MFCs) for wastewater treatment is creating a scalable architecture that provides large surface areas for oxygen reduction at the cathode and bacteria growth on the anode. We demonstrate here a scalable cathode concept by showing that a tubular ultrafiltration membrane with a conductive graphite coating and a nonprecious metal catalyst (CoTMPP) can be used to produce power in an MFC. Using a carbon paper anode (surface area Aan = 7 cm2, surface area per reactor volume Aan,s = 25 m2/m3), an MFC with two 3-cm tube cathodes (Acat = 27 cm2, Acat,s = 84 m2/m3) generated up to 8.8 W/m3 (403 mW/m2) using glucose [0.8 g/L in a 50 mM phosphate buffer solution (PBS)], which was only slightly less than that produced using a carbon paper cathode with a Pt catalyst (9.9 W/m3, 394 mW/m2; Acat = 7 cm2, Acat,s = 25 m2/m3). Coulombic efficiencies (CEs) with carbon paper anodes were 25-40% with tube cathodes (CoTMPP), compared to 7-19% with a carbon paper cathode. When a high-surface-area graphite brush anode was used (Aan = 2235 cm2, Aan,s = 7700 m2/m3) with two tube cathodes placed inside the reactor (Acat = 27 cm2, Acat,s = 93 m2/m3), the MFC produced 17.7 W/m3 with a CE = 70-74% (200 mM PBS). Further increases in the surface area of the tube cathodes to 54 cm2 (120 m2/m3) increased the total power output (from 0.51 to 0.83 mW), but the increase in volume resulted in a constant volumetric power density (∼18 W/m3). These results demonstrate that an MFC design using tubular cathodes coated with nonprecious metal catalysts, and brush anodes, is a promising architecture that is intrinsically scalable for creating larger systems. Further increases in power output will be possible through the development of cathodes with lower internal resistances.

Read Article » Back