Increased performance of single-chamber microbial fuel cells using an improved cathode structure
By Cheng, Shaoan; Liu, Hong & Logan, Bruce E.
Published in Electrochemistry Communications
NULL
2006
Abstract
Maximum power densities by air-driven microbial fuel cells (MFCs) are considerably influenced by cathode performance. We show here that application of successive polytetrafluoroethylene (PTFE) layers (DLs), on a carbon/PTFE base layer, to the air-side of the cathode in a single chamber MFC significantly improved coulombic efficiencies (CEs), maximum power densities, and reduced water loss (through the cathode). Electrochemical tests using carbon cloth electrodes coated with different numbers of DLs indicated an optimum increase in the cathode potential of 117 mV with four-DLs, compared to a <10 mV increase due to the carbon base layer alone. In MFC tests, four-DLs was also found to be the optimum number of coatings, resulting in a 171% increase in the CE (from 19.1% to 32%), a 42% increase in the maximum power density (from 538 to 766 mW m-2), and measurable water loss was prevented. The increase in CE due is believed to result from the increased power output and the increased operation time (due to a reduction in aerobic degradation of substrate sustained by oxygen diffusion through the cathode).
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.