Improvements in co-electrolysis performance and long-term stability of solid oxide electrolysis cells based on ceramic composite cathodes

By Sung-Eun Yoon and Jae-Yeong Ahn and Byung-Kook Kim and Jong-Sung Park
Published in International Journal of Hydrogen Energy NULL 2015

Abstract

The co-electrolysis of \CO2\ and \H2O\ was performed using a solid oxide electrolysis cell with yttria-stabilized zirconia (YSZ) as the electrolyte and a La0.7Sr0.2Cr0.5Mn0.5O3 (LSCM)-YSZ composite as the cathodic material. The LSCM-YSZ composite cathode showed better co-electrolysis performance than did a La0.7Sr0.3V0.9O3 (LSV)-YSZ composite cathode, suggesting that the catalytic activity of \LSCM\ is higher than that of LSV. After small amounts of CeO2 and Pd had been added as catalysts to the two composite electrodes, the LSCM-YSZ cathode showed better co-electrolysis performance than that of the LSV-YSZ composite electrode. The long-term stability of the co-electrolysis performance of the LSCM-YSZ composite cathode was higher than that of the LSV-YSZ composite cathode. These results show that the electrolysis performance of composite cathodes containing highly active materials such as CeO2 and Pd as catalysts can be improved further by choosing the proper base material.

Read Article » Back