Electrical detection of biomolecular interactions with metal–insulator–semiconductor diodes
By Estrela, P.; Migliorato, P.; Takiguchi, H.; Fukushima, H. & Nebashi, S.
Published in Biosensors and Bioelectronics
NULL
2005
Abstract
We report the label-free detection of DNA hybridization using a metal–insulator–semiconductor (MIS) diode or capacitor. Upon immobilization of single-stranded DNA on the gold gate of a MIS capacitor, the capacitance versus voltage characteristics show a significant shift in the direction of negative voltages as expected from the immobilization of negative charges on the gate. The hybridization with the complementary strand gives rise to a further significant shift in the same direction as before, which is consistent with the increase of negative charges on the gate brought about by the hybridization. Fluorescence studies indicate that the immobilization and hybridization of DNA can be electrostatically promoted by electric fields externally applied to the MIS capacitors. The MIS diode detection method is applicable to all biomolecular interactions that affect the surface dipole at the interface between the metal gate and the electrolyte and can be extended to other chemical and biochemical systems such as proteins and cells.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.