Experimental, Monte Carlo and molecular dynamics simulations to investigate corrosion inhibition of mild steel in hydrochloric acid solutions

By Khaled, K.F. & El-Maghraby, A.
Published in Arabian Journal of Chemistry NULL 2014

Abstract

The efficiency of three furan derivatives, namely 2-(p-toluidinylmethyl)-5-methyl furan (Inh. A), 2-(p-toluidinylmethyl)-5-nitro furan (Inh. B) and 2-(p-toluidinylmethyl)-5-bromo furan (Inh. C), as possible corrosion inhibitors for mild steel in 1.0 M HCl, has been determined by weight loss and electrochemical measurements. These compounds inhibit corrosion even at very low concentrations, and 2-(p-toluidinylmethyl)-5-methyl furan (Inh. A) is the best inhibitor. Polarization curves indicate that all compounds are mixed-type inhibitors, affecting both cathodic and anodic corrosion currents. Adsorption of furan derivatives on the mild steel surface follows the Langmuir adsorption isotherm, and the calculated Gibbs free energy values confirm the chemical nature of the adsorption. Monte Carlo simulations technique incorporating molecular mechanics and molecular dynamics can be used to simulate the adsorption of furan derivatives on mild steel surface in 1.0 M HCl.

Read Article » Back