Bi-level surface modification of hard disk media by carbon using filtered cathodic vacuum arc: Reduced overcoat thickness without reduced corrosion performance

By Yeo, Reuben J.; Rismani, Ehsan; Dwivedi, Neeraj; Blackwood, Daniel J.; Tan, H.R.; Zhang, Z.; Tripathy, S. & Bhatia, C.S.
Published in Diamond and Related Materials NULL 2014

Abstract

The corrosion performance of commercial hard disk media which was subjected to bi-level surface modification has been reported. The surface treatment was carried out by bombarding the surface of the magnetic media with C+ ions at 350 eV followed by 90 eV using filtered cathodic vacuum arc (FCVA). The energy and embedment depth of the impinging C+ ions were adjusted by applying an optimized bias to the substrate and simulated by a Stopping and Range of Ions in Matter (SRIM) code which predicted the formation of a graded atomically mixed layer at the carbon-media interface. Cross-section transmission electron microscopy (TEM) revealed the formation of a 1.8 nm dense nano-layered carbon overcoat structure on the surface of the media. Despite an ~ 33% reduction in the thickness, the bi-level surface modified disk showed corrosion performance similar to that of a commercially manufactured disk with a thicker carbon overcoat of 2.7 nm. This improvement in the corrosion/oxidation resistance per unit thickness can be attributed to the formation of a dense and highly sp3 bonded carbon layer, as revealed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. This study demonstrates the effectiveness of the bi-level surface modification technique in forming an ultra-thin yet protective overcoat for future hard disks with high areal densities.

Read Article » Back