Pitting corrosion of AZ91D and AJ62x magnesium alloys in alkaline chloride medium using electrochemical techniques

By Lafront, A.-M.; Zhang, W.; Jin, S.; Tremblay, R.; Dubé, D. & Ghali, E.
Published in Electrochimica Acta NULL 2005

Abstract

Pitting corrosion of AZ91D-DC (die cast), AZ91D-ESTC (electromagnetically-stirred billets; thixocast), AZ91D-SFTC (billets solidified freely; thixocast) and AJ62x-DC (die cast) specimens was studied in alkaline chloride medium (0.1 M NaOH + 0.05 M NaCl + 2 ml H2O2) at 25 °C and pH 12.3. Electrochemical noise (EN) measurements have confirmed to some extent the polarization results (passive zone, pitting current and average corrosion rate). AZ91D-ESTC specimens have shown the best corrosion resistance followed by AZ91D-SFTC and AZ91D-DC. Intense corrosion rate was observed at the beginning of experiment and it decreased with immersion period. Localized corrosion with dense pitted areas was observed during a 16 h immersion period for AZ91D-SFTC and AZ91D-ESTC specimens. The best passive zone was observed for AJ62x-DC because of the corrosion products formed at the surface. After a 6 h of immersion, EN analyses in the frequency domain indicated a change in the sub-mode of pitting, becoming a classical pitting type, for AJ62x and AZ91D die cast specimens. Analysis with the scanning reference electrode technique (SRET) has showed that AJ62x specimen presented the biggest potential difference between the most active anode and the most active cathode and more numerous zones of intense localized corrosion. It was also found that the lifetime of the pit appeared after 8:20 h of immersion was longer for AJ62x and AZ91D die cast specimens being associated to a classical pitting.

Read Article » Back