Cathodic disbonding of a thick polyurethane coating from steel in sodium chloride solution

By Luo, J.L; Lin, C.J; Yang, Q & Guan, S.W
Published in Progress in Organic Coatings NULL 1997

Abstract

The cathodic disbonding of a thick, pigmented polyurethane coating from steel in 3.5 wt.% NaCl solution was studied by using an electrochemical AC impedance technique. Double-cylinder electrolyte cells were designed to separate the measurements of cathodic disbonding process from the influence of the impedance of an artificial defect. It was found that for a thick, pigmented polyurethane coating, the more important transport pathway of the reactive species is along the coating/steel interface rather than through the coating. There existed a delay time for the cathodic disbonding process, and cathodic polarization was not a predominant factor in determining the cathodic disbonding behavior in the early stages. The thick polyurethane coating, which was applied on a well sand-blasted steel surface, had excellent resistance to cathodic disbonding.

Read Article » Back