In vivo release from a drug delivery MEMS device
By Mishra, Nirankar N.; Retterer, Scott; Zieziulewicz, Thomas J.; Isaacson, Michael; Szarowski, Donald; Mousseau, Donald E.; Lawrence, David A. & Turner, James N.
Published in Journal of Controlled Release
NULL
2004
Abstract
A drug delivery microelectromechanical systems (MEMS) device was designed to release complex profiles of multiple substances in order to maximize the effectiveness of drug therapies. The device is based on micro-reservoirs etched into a silicon substrate that contain individual doses of drug. Each dose is released by the electrochemical dissolution of the gold membrane that covers the reservoir. The first in vivo operation of this device was reported in this study. Subcutaneous release was demonstrated in rats using two tracer molecules, fluorescein dye and radiolabeled mannitol, and one radiolabeled chemotherapeutic agent, carmustine (BCNU). BCNU was chosen because of the need to improve the direct delivery of chemotherapy to malignant tumors. The spatial profile of fluorescein dye release from the drug delivery device was evaluated by fluorimetry, the temporal profile of 14C labeled mannitol release was evaluated by liquid scintillation counting, and the temporal profile of 14C labeled BCNU release was evaluated by accelerator mass spectrometry (AMS). Release profiles obtained from injected controls were compared with those from activated devices. The in vivo dye release results showed high concentration of fluorescein in the flank tissue surrounding the devices 1 h after activation. The 14C labeled mannitol released from the drug delivery devices was rapidly cleared (1 day) from the rat urine. In vivo release of 14C labeled BCNU from activated devices showed slightly slower kinetics than the injected and in vitro controls, and the time to reach the steady-state plasma 14C concentration was on the order of 1 h. All these results demonstrated the capability of this drug delivery device to achieve localized delivery of various compounds with well-defined temporal profiles.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.