An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base
By Doyle, Richard L. & Lyons, Michael E. G.
Published in Phys. Chem. Chem. Phys.
The Royal Society of Chemistry
2013
Abstract
The oxygen evolution reaction at multi-cycled iron oxy-hydroxide films in aqueous alkaline solution is discussed. Steady-state Tafel plot analysis and electrochemical impedance spectroscopy have been used to elucidate the kinetics and mechanism of oxygen evolution. Tafel slopes of ca. 60 mV dec-1 and 40 mV dec-1 are found at low overpotentials depending on the oxide growth conditions, with an apparent Tafel slope of ca. 120 mV dec-1 at high overpotentials. Reaction orders of ca. 0.5 and 1.0 are observed at low and high overpotentials, again depending on the oxide growth conditions. A mechanistic scheme involving the active participation of octahedrally coordinated anionic iron oxyhydroxide surfaquo complexes, which form the porous hydrous layer, is proposed. The latter structure contains considerable quantities of water molecules which facilitate hydroxide ion discharge at the metal site during active oxygen evolution. This work brings together current research in heterogeneous electrocatalysis and homogeneous molecular catalysis for water oxidation.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.