Revisiting the Redox Properties of Hydrous Iridium Oxide Films in the Context of Oxygen Evolution
By Steegstra, Patrick; Busch, Michael; Panas, Itai & Ahlberg, Elisabet
Published in The Journal of Physical Chemistry C
NULL
2013
Abstract
The electrochemistry of hydrous iridium oxide films (HIROF) is revisited. Cyclic voltammograms of HIROFs display two reversible redox couples commonly assigned to the Ir(III)/Ir(IV) and Ir(IV)/Ir(V) transitions, respectively. However, compared to the first, the second redox couple has significantly less charge associated with it. This effect is interpreted as partial oxidation of Ir(IV) as limited by nearest neighbor repulsion of resulting Ir(V) sites. Thus, the redox process is divided into two steps: one preceding and one overlapping the oxygen evolution reaction (OER). Here, the “super-nernstian� pH dependence of the redox processes in the HIROF is used to expose how pH controls the overpotential for oxygen evolution, as evidenced by the complementary increased formation of Ir(V) oxide. A recently formulated binuclear mechanism for the OER is employed to illustrate how hydrogen bonding may suppress the OER, thus implicitly favoring Ir(V) oxide formation above the thermodynamic onset potential for the OER at low pH.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.