Electro- and Photochemical Water Oxidation on Ligand-free Co3O4 Nanoparticles with Tunable Sizes
By Grzelczak, Marek; Zhang, Jinshui; Pfrommer, Johannes; Hartmann, Jürgen; Driess, Matthias; Antonietti, Markus & Wang, Xinchen
Published in ACS Catalysis
NULL
2013
Abstract
Splitting of water to hydrogen and oxygen on colloidal catalysts is a promising method for future energy and chemistry cycles. The currently used high-performance oxides containing expensive elements (Ru, Ir) are progressively being replaced by more sustainable ones, such as Co3O4. Although the size of the nanoparticles determines their catalytic performance, the control over the particles' diameter is often synthetically difficult to achieve. An additional obstacle is the presence of stabilizing agent, an organic molecule that blocks accessible surface-active centers. Herein, we present how precise control over size of the cobalt oxide nanoparticles (Co3O4 NPs), their colloidal stability, and the ligand-free surface affect overall performance of the photocatalytic oxygen evolution. We accordingly correlated the photochemical results with the electrochemical studies, concluding that accessibility of the active species on the particles' surface is crucial parameter in water oxidation.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.