Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine
By Santoro, C.; Ieropoulos, I.; Greenman, J.; Cristiani, P.; Vadas, T.; Mackay, A. & Li, B.
Published in International Journal of Hydrogen Energy
NULL
2013
Abstract
The potential of single chamber microbial fuel cells (SCMFC) to treat raw, fresh human urine was investigated. The power generation (55 μW) of the SCMFCs with platinum (Pt)-based cathode was higher than those with Pt-free cathodes (23 μW) at the beginning of the tests, but this difference decreased over time. Up to 75% of the chemical oxygen demand (COD) in urine was reduced after a 4-day treatment. During this time, the ammonium concentration increased significantly to 5 gNH4+-N/L in SCMFCs due to urea hydrolysis, while sulfate concentration decreased and transformed into H2S due to sulfate reduction reactions. Calcium and magnesium concentrations dropped due to precipitation at high pH, and phosphorous decreased 20–50% due to the formation of struvite that was found on the cathode surface and on the bottom of the anodic chamber. The advantages of power generation, COD removal, and nutrient recovery make SCMFCs treating human urine a cost-effective biotechnology.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.