Conductivity Scaling Relationships for Nanostructured Block Copolymer/Ionic Liquid Membranes
By Hoarfrost, Megan L. & Segalman, Rachel A.
Published in ACS Macro Letters
NULL
2012
Abstract
To optimize the properties of membranes composed of mixtures of block copolymers with ionic liquids, it is essential to understand universal scaling relationships between composition, structure, temperature, and ionic conductivity. In this work, we demonstrate the universality of relationships developed to describe the temperature and concentration dependence of ionic conductivity in such membranes by comparing the conductivity behavior of mixtures of ionic liquid with two block copolymer chemistries. The conductivities of all the mixtures are described by a single expression, which combines percolation theory with the Vogel -Tamman -Fulcher (VTF) equation. Percolation theory describes the power law dependence of conductivity on the overall volume fraction of ionic liquid, while the VTF equation takes into account the effect of the glass transition temperature of the conducting phase on the temperature dependence. The dominance of the overall volume fraction of ionic liquid in determining conductivity indicates that there is incredible flexibility in designing highly conductive block copolymer/ionic liquid membranes.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.