A joint application of spectroscopic, electrochemical and theoretical approaches in evaluation of the radical scavenging activity of 3-OH flavones and their iron complexes towards different radical species
By Dimitric Markovic, Jasmina M.; Markovic, Zoran S.; Pasti, Igor A.; Brdaric, Tanja P.; Popovic-Bijelic, Ana & Mojovic, Milos
Published in Dalton Trans.
The Royal Society of Chemistry
2012
Abstract
Combined spectroscopic (UV/visible, MS and EPR), electrochemical (CV) and theoretical approaches were used to evaluate the relevant interactions of morin and quercetin, as well as their respective iron(iii) complexes with DPPH, tempone, hydroxyl and superoxide radicals. The results on iron complexation specify the stoichiometry and the relevant structural forms entering the chelation of the molecules. The spectroscopic DPPH assay shows better antioxidant activity of quercetin and its iron complex both in terms of EC50 values and stoichiometry. The results of 2-deoxyribose degradation suggest that antioxidant activities of morin and quercetin may originate from their combined effect of iron chelation and radical scavenging. The distinctive difference in the EPR spectra of morin and quercetin radicals suggests different positions of the radical centers which may account for different sequences of their activities towards investigated radicals. Activity ranking of quercetin and morin, established by cyclic voltammetry, confirms their activity sequence obtained by EPR results and is also in agreement with the results of conformational analysis. The equilibrium geometries, optimized with the M052X functionals and 6-311G(d, p) basis set, predict structural modifications between the ligand molecules in the free state and in the complex structures. The arguments gained through experimental results can also be rationalized in terms of overall molecular geometry and structural features governing antioxidant behavior i.e. substitution pattern of the ring B.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.