Composite Fluorocarbon Membranes by Surface-Initiated Polymerization from Nanoporous Gold-Coated Alumina
By Escobar, Carlos A.; Zulkifli, Ahmad R.; Faulkner, Christopher J.; Trzeciak, Alex & Jennings, G. Kane
Published in ACS Applied Materials & Interfaces
NULL
2012
Abstract
This manuscript describes the versatile fabrication and characterization of a novel composite membrane that consists of a porous alumina support, a 100 nm thick nanoporous gold coating, and a selective poly(5-(perfluorohexyl)norbornene) (pNBF6) polymer that can be grown exclusively from the nanoporous gold or throughout the membrane. Integration of the three materials is achieved by means of silane and thiol chemistry, and the use of surface-initiated ring-opening metathesis polymerization (SI -ROMP) to grow the pNBF6. The use of SI -ROMP allows tailoring of the extent of polymerization of pNBF6 throughout the structure by varying polymerization time. Scanning electron microscopy (SEM) images indicate that the thin polymer films cover the structure entirely. Cross-sectional SEM images of the membrane not only corroborate growth of the pNBF6 polymer within both the porous alumina and the nanoporous gold coating but also show the growth of a pNBF6 layer between these porous substrates that lifts the nanoporous gold coating away from the alumina. Advancing contact angle (θA) measurements show that the surfaces of these composite membranes exhibit both hydrophobic (θA = 121 -129)° and oleophobic (θA = 69 -74)° behavior due to the fluorocarbon side chains of the pNBF6 polymer that dominate the surface. Results from electrochemical impedance spectroscopy (EIS) confirm that the membranes provide effective barriers to aqueous ions, as evidenced by a resistive impedance on the order of 1 × 107 Ω cm2. Sulfonation of the polymer backbone substantially enhances ion transport through the composite membrane, as indicated by a 40 -60 fold reduction in resistive impedance. Ion transport and selectivity of the membrane change by regulating the polymerization time. The fluorinated nature of the sulfonated polymer renders the membrane selective toward molecules with similar chemical characteristics.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.