A highly efficient buckypaper-based electrode material for mediatorless laccase-catalyzed dioxygen reduction
By Hussein, L.; Rubenwolf, S.; von Stetten, F.; Urban, G.; Zengerle, R.; Krueger, M. & Kerzenmacher, S.
Published in Biosensors and Bioelectronics
NULL
2011
Abstract
The redox enzyme laccase from Trametes versicolor efficiently catalyzes the oxygen reduction reaction (ORR) in mediatorless biofuel cell cathodes when adsorbed onto multi-walled carbon nanotubes (MWCNTs). In this work we demonstrate that the fabrication of MWCNTs in form of buckypaper (BP) results in an excellent electrode material for laccase-catalyzed cathodes. BPs are mechanically stable, self-entangling mats with high dispersion of MWCNTs resulting in easy to handle homogeneous layers with highly mesoporous structures and excellent electrical conductivities. All biocathodes have been electrochemically investigated in oxygen-saturated buffer at pH 5 by galvanostatic polarization and potentiodynamic linear sweep voltammetry. Both methods confirm an efficient direct interaction of laccase with BP with a high open circuit potential of 0.882 V vs. normal hydrogen electrode (NHE). The high oxygen reduction performance leads to high current densities of 422 ± 71 μA cm-2 at a typical cathode potential of 0.744 V vs. NHE. When the current density is normalized to the mass of the electrode material (mass activity), the BP-based film electrodes exhibit a 68-fold higher current density at 0.744 V vs. NHE than electrodes fabricated from the same MWCNTs in a non-dispersed agglomerated form as packed electrodes. This clearly shows that MWCNTs can act more efficiently as cathode when prepared in form of BP. This can be attributed to reduced diffusional mass transfer limitations and enhanced electrical conductivity. BP is thus a very promising material for the construction of mediatorless laccase cathodes for ORR in biofuel cells. In addition we demonstrated that these electrodes exhibit a high tolerance towards glucose, the most common bioanode fuel.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.