Development and microstructural characterizations of Mg–Zn–Ca alloys for biomedical applications
By Xu, Zhigang; Smith, Christopher; Chen, Shuo & Sankar, Jag
Published in Materials Science and Engineering: B
NULL
2011
Abstract
Mg–10Zn–1Ca, Mg–20Zn–1Ca and Mg–6Zn–1Ca alloys were processed from powders in an argon filled glove box. The solidification rate was varied. Fast solicitation resulted in very small grain size and continuous 3D network distribution of the secondary phase in grain boundary. The alloy processed from fast solidification had better corrosion resistance than those solidified at low cooling rates. It may be because of the increased Zn and Ca in magnesium grains when the alloy was quickly cooled down from its molten state. Liquid nitrogen quenching at the end of solution treatment also created better distribution of network shaped secondary phase than water quenched alloys. Moderate temperature in solution treatment is preferred because it did not cause too much grain growth but increased microhardness of the treated alloys. Alloy with lower Zn amount had better corrosion resistance in PBS solution in this study.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.