On the reversibility of anode supported proton conducting solid oxide cells
By Azimova, Maria A. & McIntosh, Steven
Published in Solid State Ionics
NULL
2011
Abstract
Reversible proton conducting solid oxide cells (SOCs) off a highly efficient route to matching supply from intermittent, renewable resources, with power demand by consumers. The cells would store excess electrical energy as chemical fuel during times of peak production, and operate in reverse during times of peak demand. In this study we examine the operation of anode supported proton conducting SOCs in electrolysis mode. The required overpotential for a given current density decreases with increasing humidity at the anode and increasing temperature. All of the V–I curves show distinct curvature. The electrode polarization resistance increases and electrolyte ohmic resistance decreases with increasing current density. This is accompanied by a deviation below the theoretical rate of hydrogen production. We interpret these changes as resulting from deviation away from pure proton conduction in the cell with increasing polarization.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.