Electro-oxidation of ethylene glycol on nanoporous Ti–Cu amorphous alloy
By Chen, Cuijie; Zhu, Shengli; Yang, Xianjin; Pi, Lele & Cui, Zhenduo
Published in Electrochimica Acta
NULL
2011
Abstract
This work describes ethylene glycol (EG) electro-oxidation over nanoporous structure catalyst prepared by dealloying Ti–Cu amorphous alloy. Scanning electron microscopy (SEM) was used to characterize nanoporous catalysts. Electrocatalytic performances in acid and alkaline mediums were measured by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results showed that nanoporous Ti–Cu amorphous alloy exhibited apparent electrocatalytic ability in terms of higher oxidation current in CV and CA curves comparing to raw Ti–Cu amorphous alloy. Electro-oxidation of EG took place more easily in alkaline medium than that in acid medium. In acid medium, heat treatment improved the electrocatalytic activity of nanoporous catalyst. In alkaline medium, heat treatment played an enhancing role below 0.1 V and a depressing role above 0.1 V. Possible electro-oxidation mechanism of EG was also discussed.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.