Dense and long carbon nanotube arrays decorated with Mn3O4 nanoparticles for electrodes of electrochemical supercapacitors
By Cui, Xinwei; Hu, Fengping; Wei, Weifeng & Chen, Weixing
Published in Carbon
NULL
2011
Abstract
Mn3O4 nanoparticles have been homogenously deposited within highly dense, millimeter-long carbon nanotube array (CNTA) by dip-casting method from non-aqueous solutions. After modified with Mn3O4 nanoparticles, CNTAs have been changed from hydrophobic to hydrophilic without their alignment and integrity being destroyed. The hydrophilic Mn3O4/CNTA composite electrodes present improved performance for supercapacitors, compared with as-grown CNTA electrodes. The maximum specific capacitance of the Mn3O4/CNTA composite electrode was found to be 143 F/g, leading to an exceptionally high area-normalized capacitance (Faraday per geometric area of the electrode) of 1.70 F/cm2, while the specific capacitance for as-grown CNTA electrode is only 1–2 F/g. When normalized to the deposited Mn3O4 nanoparticles, the specific capacitance was estimated to be as high as 292 F/g. The method is promising for producing high performance area-limited electrochemical supercapacitors and provides a new route of decorating highly dense CNTAs with active materials.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.