Mediated electron transfer with P450cin
By Çekiç, Sevil Zengin; Holtmann, Dirk; Güven, Güray; Mangold, Klaus-Michael; Schwaneberg, Ulrich & Schrader, Jens
Published in Electrochemistry Communications
NULL
2010
Abstract
P450cin stereoselectively hydroxylated its natural substrate 1,8-cineole to 2β-hydroxy-1,8-cineole in an electrochemical cell which allowed for substitution of the natural cofactor NADPH by artificial redox mediators. Cobalt sepulchrate, phenosafranine, safranine T, FAD and FMN enabled artificial electron transfer from the platinum electrode to P450cin via the redox partner protein cindoxin. The highest product formation, 6.50 ± 0.60 nmol (product) nmol (P450)-1 min-1 cm-2, was achieved using cobalt sepulchrate. Surprisingly, phenosafranine and safranine T enabled electron transfer even in the absence of NADPH, cindoxin, and cindoxin reductase, thereby illustrating that none of the natural redox partners is needed for product formation.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.