Effect of nitrogen alloying on the semiconducting properties of passive films and metastable pitting susceptibility of 316L and 316LN stainless steels

By Lee, Jae-Bong & Yoon, Sang-In
Published in Materials Chemistry and Physics NULL 2010

Abstract

The beneficial effect of nitrogen alloying on the corrosion resistance of stainless steels has been attributed to the increase of the local pH within the active sites and the enhanced repassivation of the metastable pits. In order to better understand the effect of nitrogen alloying, in situ capacitance measurements and potentiostatic polarization were conducted for 316L and 316LN stainless steels with different nitrogen contents in deaerated 0.1 M Na2SO4 and 0.1 M NaCl aqueous solutions. The Mott–Schottky plots obtained from the in situ capacitance measurements offered information on the donor concentration and the thickness of the space charge region within the passive film. The metastable pitting susceptibility was investigated by performing potentiostatic polarization tests. The results showed that nitrogen alloying decreased the donor densities and the number of metastable pits, while the absorption of chloride ions on the passive film had the opposite effect. Auger electron spectroscopy (AES) analysis demonstrated that nitrogen alloying enriched the chromium within the passive film. The relationship between the semiconducting properties of the passive film and the metastable pitting susceptibility was elucidated.

Read Article » Back