Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions – Experimental and theoretical studies

By Amin, Mohammed A.; Khaled, K.F. & Fadl-Allah, Sahar A.
Published in Corrosion Science NULL 2010

Abstract

The protection influence of glycine (Gly) and a one of its derivatives, namely 2-(bis(2-aminoethyl)amino) acetic acid, designated here as GlyD; where GlyD stands for “glycine derivative�, against cold rolled steel (CRS) corrosion was studied in aerated stagnant 1.0 M HCl solutions at 25 °C. Measurements were conducted under various experimental conditions using Tafel polarization, linear polarization and impedance techniques. These studies have shown that Gly and GlyD are very good “green�, mixed-type inhibitors. GlyD is more effective than Gly itself in inhibiting the acid corrosion of CRS. Electrochemical frequency modulation (EFM) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) method of analysis are also presented here for monitoring corrosion. Corrosion rates obtained from both EFM and ICP-AES methods are comparable with those recorded using Tafel extrapolation method, confirming validation of corrosion rates measured by the latter. Adsorption via H-bond is discussed here, based on the presence of oxide film on the electrode surface as well as the number of NH linkages in the inhibitor molecule. Quantum chemical method was also employed to explore the relationship between the inhibitor molecular properties and its protection efficiency. The density function theory (DFT) is used to study the structural properties of Gly and GlyD in aqueous phase in an attempt to understand their inhibition mechanism. The protection efficiencies of these compounds showed a certain relationship to highest occupied molecular orbital (HOMO) energy, Mulliken atomic charges and Fukui indices.

Read Article » Back