Structure of Dealloyed PtCu3 Thin Films and Catalytic Activity for Oxygen Reduction
By Yang, Ruizhi; Leisch, Jennifer; Strasser, Peter & Toney, Michael F.
Published in Chemistry of Materials
NULL
2010
Abstract
The detailed structure and composition (surface and bulk) as well as catalytic activity for oxygen reduction of electrochemically dealloyed PtCu3 thin films have been investigated. Synchrotron-based anomalous X-ray diffraction (AXRD) reveals that a Pt enriched surface region (∼1.0 nm thick) and a Cu depleted interior (atomic ratio different from that of PtCu3) are formed in the dealloyed film, and we directly observe a compressive lattice strain in the Pt surface region. The dealloyed PtCu3 thin films show a ∼2.4 fold increase in the specific oxygen reduction activity over pure Pt thin films as measured by a rotating disk electrode (RDE). Our results show that the enhanced catalytic activity of the dealloyed Pt-Cu film is primarily due to the compressive strain in the surface layer (ligand effect is very weak). We compare our results on thin films to related results on nanoparticles. These studies provide a better understanding of the structure - composition and structure - activity relationships in Pt-skeleton structures prepared by dealloying base-metal-rich alloys.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.