Microabrasion–corrosion of cast CoCrMo alloy in simulated body fluids

By Sun, D.; Wharton, J.A.; Wood, R.J.K.; Ma, L. & Rainforth, W.M.
Published in Tribology International NULL 2009

Abstract

Wear and corrosion of metal-on-metal hip replacements results in wear debris and metal-ion release in vivo, which may subsequently cause pain and hypersensitivity for patients. Retrieved metal-on-metal hip replacements have revealed that two-body sliding wear and three-body abrasive wear are the predominant wear mechanisms. However, there is a lack of understanding of the combined effects of wear/corrosion, especially the effect of abrasion–corrosion. This study investigates the sliding–corrosion and abrasion–corrosion performance of a cast CoCrMo alloy in simulated hip joint environments using a microabrasion rig integrated with an electrochemical cell. Tests have been conducted in 0.9% NaCl, phosphate buffered saline solution, 25% and 50% bovine serum solutions with 0 or 1 g cm–3 SiC at 37 °C. Experimental results reveal that under abrasion–corrosion test conditions, the presence of proteins increased the total specific wear rate. Conversely, electrochemical noise measurements indicated that the average anodic current levels were appreciably lower for the proteinaceous solutions when compared with the inorganic solutions. A severely deformed nanocrystalline layer was identified immediately below the worn surface for both proteinaceous and inorganic solutions. The layer is formed by a recrystallisation process and/or a strain-induced phase transformation that occurs during microabrasion–corrosion.

Read Article » Back