Experimental and atomistic simulation studies of corrosion inhibition of copper by a new benzotriazole derivative in acid medium

By Khaled, K.F.
Published in Electrochimica Acta NULL 2009

Abstract

The efficiency of N-(2-thiazolyl)-1H-benzotriazole-1-carbothioamide (TBC) as a non-toxic corrosion inhibitor for copper in 0.5 M HCl has been tested by weight loss and electrochemical techniques. Electrochemical techniques show that TBC is a mixed-type inhibitor and its inhibition mechanism on copper surface is adsorption assisted by H-bond formation. Impedance measurements show a wide peak presumably given by more than one time constant in the presence of TBC. Also, impedance results show that the values of CPEs (constant phase elements) tend to decrease and both polarization resistance and inhibition efficiency tend to increase with increasing of TBC concentration due to an increase in the electric double layer. Monte Carlo simulations incorporating molecular mechanics and molecular dynamics show that the TBC adsorb on the copper surface firmly through the thiazolyl and carbothioamide groups, the adsorption energy as well as hydrogen bond length have been calculated for both TBC and benzotriazole (BTA) for comparison. Quantum chemical calculations reveal that TBC has higher HOMO, lower LUMO, lower energy gap and lower dipole moment (μ) than BTA, which proves that TBC is better copper corrosion inhibitor compared with BTA in 0.5 M HCl.

Read Article » Back