Electrochemical Impedance Spectroscopy based voltage modeling of lithium Thionyl Chloride (Li∖SOCl2) primary battery at arbitrary discharge
By Zabara, Mohammed Ahmed; Ulgut, Burak
Published in Electrochimica Acta
2020
Abstract
Primary batteries possess high energy densities that is beneficial to numerous important applications where recharging is impossible or impractical. The ability to accurately predict the voltage behavior of the battery under certain discharge regime is crucial in battery selection. In this work, Electrochemical Impedance Spectroscopy based approach is applied to predict the voltage of Lithium Thionyl Chloride (Li/SOCl2) primary battery under two discharge conditions. The predicted voltage responses show high accuracy with minor deviations related to the passivation phenomena at the anode. Relevant corrections were made to improve the accuracy of the simulated voltages. The modeling method shows accurate voltage predictions at all states of charge. Moreover, the method was used to predict the voltage of Lithium Manganese Dioxide (Li/MnO2) primary battery. The results show decent match with the experimental values demonstrating the applicability of the method to other chemistries of primary batteries.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.