Modelling supercapacitors using a dynamic equivalent circuit with a distribution of relaxation times
By Helseth, L. E.
Published in Journal of Energy Storage
2019
Abstract
Supercapacitors are often modelled using electrical equivalent circuits with a limited number of branches. However, the limited number of branches often cannot explain long-term dynamics, and one therefore has to resort to more computationally challenging basic models governing diffusion and drift of ions. Here, it is shown that consistent modelling of a supercapacitor can be done in a straightforward manner by introducing a dynamic equivalent circuit model that naturally allows a large number or a continuous distribution of time constants, both in time and frequency domains. Such a model can be used to explain the most common features of a supercapacitor in a consistent manner. In the time domain, it is shown that the time-dependent charging rate and the self-discharge of a supercapacitor can both be interpreted in this model with either a few or a continuous distribution of relaxation times. In the frequency domain, the impedance spectrum allows one to extract a distribution of relaxation times. The unified model presented here may help visualizing how the distribution of relaxation times or frequencies govern the behaviour of a supercapacitor under varying circumstances.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.