Optimization of the electrooxidation of aqueous ammonium sulfite for hydrogen production at near-neutral pH using response surface methodology
By M
Published in International Journal of Hydrogen Energy
2019
Abstract
Sulfur-based thermochemical cycles, such as the hybrid sulfur-ammonia (HySA) cycle, offer a valuable approach in which hydrogen is produced by exploiting sulfur dioxide (potentially pollutant emissions) through the electrochemical oxidation of aqueous sulfite. In this study, the effect of pH on electrooxidation rate was assessed by comparing different reaction scenarios. Then, a Central Composite Design (CCD) combined with a Response Surface Methodology (RSM) was used to optimize batch electrooxidation of ammonium sulfite at near-neutral pH. Results show that the use of an anion exchange membrane (AEM) greatly improves sulfite electrooxidation rate while pH is effectively stabilized. Furthermore, a second-order model that relates applied potential and sulfite concentration with the normalized half-life of the reaction was obtained and verified experimentally at long-term batch electrooxidations. A good agreement between the model and experimental tests, adequate hydrogen recoveries and low sulfur crossover through the membrane demonstrate practical robustness of this approach.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.