Physicochemical and in-vitro biological analysis of bio-functionalized titanium samples in a protein-rich medium
By Rao, Shradha; Astaneh, Sarah Hashemi; Villanueva, Jose; Silva, Filipe; Takoudis, Christos; Bijukumar, Divya; Souza, J
Published in Journal of the Mechanical Behavior of Biomedical Materials
2019
Abstract
The long-term survivability of the implants is strongly influenced by the osseointegration aspects of the metal-bone interface. In this study, biological materials such as fibrinogen and fibrin are used to functionalize titanium surfaces to enhance the ability of implants to interact with human tissues for accelerated osseointegration. The biofunctionalized samples that were assessed by White Light Microscope, Scanning Electron Microscope and Water Contact Angle for surface properties proved samples etched with HF/HNO3 to be better than HCl/H2SO4 in terms of having optimum roughness and hydrophilicity for our further experiments. To further investigate the in vitro osseointegration of the biofunctionalized samples, Osteoblasts were cultured on the surfaces to assess cell proliferation, adhesion, gene expression as well as the mineralization process. Further bacterial adhesion (Enterococcus faecalis) and electrochemical evaluation of surface coating stability were carried out. Results of the study show that the biofunctionalized surfaces provided high cell proliferation, adherence, gene expression, and mineralization compared to other control surfaces hence proving them to have efficient and enhanced osseointegration. Also, bacterial adhesion studies show that there is no augmented growth of bacteria on the biofunctionalized samples in comparison to control surfaces. Electrochemical studies proved the existence of a stable protein layer on the bio functionalized surfaces. Such a method can reduce the time for osseointegration that can decrease risks in early failures of implants due to its enhanced hydrophilicity and cytocompatibility.
Microsoft is Ending Support for Windows 7
Microsoft will discontinue support for Windows 7 on January 14, 2020 which means Gamry will also be discontinuing support for Windows 7. If you are upgrading to Windows 10, like many companies and institutions, you need to be running Version 7 of our s oftware . Please note that only USB and Ethernet-based instruments can run in Version 7. Eligible users can download the latest version of our software through our online Client Portal .
If you haven't already registered your instrument, you can do so through the Client Portal .
Please email Technical Support if you have any questions regarding this transition. Please be sure to include your instrument model and serial number when contacting us.